

University of Maryland Center for Environmental Science (ian.umces.edu/symbols/)

Fisheries capacity building workshop – November 2021

What you will learn:

- What are the key elements
- What is in a harvest strategy
- Reference points and performance indicators
- Commonwealth harvest strategy
- Examples harvest strategies in Torres Strait

A harvest strategy should:

- Be easy to understand
- Be unambiguous
- Make sense
- Be precautionary

Six Key Elements

- 1. <u>Objective(s)</u> what you are trying to achieve
- 2. <u>Reference Points</u> benchmarks
- 3. <u>Indicator(s)</u> what you measure
- 4. <u>Performance measure(s)</u> how you are tracking
- 5. <u>Decision Rules</u> how you will react
- 6. <u>Meta Rules</u> (Exceptional Circumstances) for when the unusual happens

Definitions

Example - fishery

Six Key Elements

- 1. <u>Objective</u>: Keep fishery sustainable and profitable
- 2. <u>Reference Point:</u> Fishing mortality <= a target
- 3. <u>Indicator:</u> Current level of fishing mortality
- 4. <u>Performance measure:</u> How close to target
- 5. <u>Decision Rule:</u> Increase/decrease catch
- 6. <u>Meta Rule</u>; e.g. If bad signs in other indicators then further reduce the catch

University of Maryland Center for Environmental Science (ian.umces.edu/symbols/)

Monitoring + Assessment + Decision rule

- Monitoring 🗴
- Assessment ×
- Decision Rule 🗶

Fisheries management is "flying blind"

- No idea what is happening
- Doesn't know what it means
- No informed way to respond

Monitoring + Assessment + Decision rule

- Monitoring
- Assessment ×
- Decision Rule 🗴

Fishery management

- Can see what is happening
- Does not know what it means
- No informed way to respond

Monitoring + Assessment + Decision rule

- Monitoring
- Assessment ✓
- Decision Rule 🗴

Fisheries management

- Can see what is happening
- Knows what it means
- No informed way to respond

Monitoring + Assessment + Decision rule

- Monitoring
- Assessment ✓
- Decision Rule ✓

Fisheries management

- Can see what is happening
- Knows what it means
- Has tools needed to respond

Defining some terms - defaults

- Biomass (B) is the total weight of fish (usually of spawners but has to be defined)
- Fishing mortality rate (F) is a particular form of an exploitation rate
- Target reference point (F_{TARG} or B_{TARG}) is an exploitation rate or biomass to be aimed for
- Limit reference point (F_{LIM} or B_{LIM}) is an exploitation rate or biomass to be avoided
- Exploitation rate is the fraction of the available stock that is caught (=C/B)

Defining some terms - defaults

Limit reference point

- To be avoided
- B_{LIM} = 20% original biomass
- May be higher for important food chain spp
- F_{LIM} = High effort level will reduce biomass below 20% original biomass

Defining some terms - defaults

Target Reference Point

- B_{TARG} = 48% original biomass
- F_{TARG} is the desired exploitation rate to get you to B_{TARG}
- Biomass above B_{MSY} (Default B_{MSY} = 40%)
- $B_{TARG} = 48\%$ original biomass (1.2 x B_{MSY})
- F_{TARG} exploitation rate that reduces biomass to 48% original biomass
 - Only have biomass estimates from Tier 1 or 2 assessments
 - Proxies need to be developed for species without formal assessments.

Maximum Sustainable Yield (MSY)

Calculate MSY used the following data

- Biological characteristics of the fish stock
 - Growth
 - Mortality
 - Recruitment
- Revenue

Maximum Sustainable Yield (MSY)

Maximum Sustainable Yield (MSY)

- Theory developed in the 1950s
- The modelling was based on real life observations and experiments
- Seeks to find the highest long term catch that can be taken from a fish stock at sustainable levels
- But the problems with MSY include:
 - Fish stocks fluctuate with environmental conditions
 - It only considers revenue, not costs

Maximum Economic Yield (MEY)

Calculating MEY uses the data used for MSY

- Biological characteristics of the fish stock
 - Growth
 - Mortality
 - Recruitment
- Revenue

As well as

- Costs
- Catch and effort

Maximum Economic Yield (MEY)

Harvest Strategy

Australian Commonwealth Fisheries

Fisheries capacity building workshop – November 2021

Harvest Strategy - Commonwealth

Harvest Strategy - Commonwealth

Applies to key commercial species

- Target reference point
 - Stock biomass (B_{Targ}) required to produce maximum economic yield from the fishery (B_{MEY})
 - Fishing mortality (F_{Targ}) that results in biomass depletion to 48 % of the unfished biomass.
- Limit reference point
 - All stocks must be maintained above their biomass limit reference point (B_{LIM}) >90 % of the time
 - Fishing mortality point (F_{LIM}) above which the removal rate from the stock is too high and will result in the stock falling below B_{LIM}

Australian stocks – fishing mortality

FIGURE 1.3 Fishing mortality status (number of stocks), 2004 to 2019

24

Australian stocks – Biomass

FIGURE 1.4 Biomass status (number of stocks), 2004 to 2019

Australian stocks - performance

Harvest Strategy

Torres Strait

Fisheries capacity building workshop – November 2021

TRL Harvest Strategy

Target reference point

- B_{TARG} is the spawning biomass level equal to recent levels (2005-2015)
- $B_{TARG} = 0.65 B_0$
- F_{TARG} is the estimated level of fishing mortality rate that maintains the spawning biomass around B_{TARG}
- F_{TARG} = 0.15

Limit reference point

- B_{LIM} is the spawning biomass level below which the risk to the stock is unacceptably high
- B_{LIM} = 0.32 B₀

TRL Harvest Strategy

Monitoring

- TIB catch and effort data
- TVH catch and effort data
- Fishery independent surveys (pre-season / mid-season)
- Catch sampling (size frequency / sex ratio)

Assessment

- Formal quantitative assessment
- Empirical harvest strategy

TRL Harvest Strategy

Decision Rules

- Maximum catch limit of 1000 t
- 1+ pre-season survey $\leq 1.25 \rightarrow assessment$
- < Blim 2 years \rightarrow fishery closure
- Various scenarios

No proxies consistent with Commonwealth HSP

- Too variable
- Not cost-effective
- Intention to meet the HSP

Have adopted a Tiered harvest strategy

- High Tier lots of data
- Low Tier poor data
- Decision Rules
 - Catch-based
 - Joint TAC trigger limit

lan Knuckey ian@fishwell.com.au

www.fishwell.com.au

http://www.youtube.com/user/FishwellConsulting

Fisheries capacity building workshop – November 2021